Bilancio di materia in presenza di reazioni chimiche

Termodinamica dell'Ingegneria Chimica

Il termine di generazione

Mentre la massa generalmente si conserva, le specie chimiche possono reagire e quindi il numero di moli può cambiare

la velocità con cui cambia il numero di moli contenute nel volume di controllo al tempo t

la velocità
con cui le
moli entrano
nel volume
di controllo
al tempo t

la velocità
con cui le
moli escono
dal volume
di controllo
al tempo t

+

la velocità con cui le moli vengono generate nel volume di controllo al tempo t

Accumulo = Ingresso

Uscita

+ Generazione

I numeri stechiometrici

Una generica reazione si può scrivere

$$|\mathbf{v}_1|\mathbf{A}_1 + ... + |\mathbf{v}_r|\mathbf{A}_r = |\mathbf{v}_{r+1}|\mathbf{A}_{r+1} + ... + |\mathbf{v}_n|\mathbf{A}_n$$

Dove |Vi| sono i coefficienti stechiometrici

e V_i sono i numeri stechiometrici, positivi per i prodotti e negativi per i reagenti

Con questa convenzione, se n_{i,in} e n_{i,out} sono le moli della specie chimica "i" in ingresso e in uscita, rispettivamente, si ha

$$\frac{n_{1,\text{out}} - n_{1,\text{in}}}{v_1} = \frac{n_{2,\text{out}} - n_{2,\text{in}}}{v_2} = \frac{n_{3,\text{out}} - n_{3,\text{in}}}{v_3} = \frac{n_{4,\text{out}} - n_{4,\text{in}}}{v_4} = \frac{n_{i,\text{out}} - n_{i,\text{in}}}{v_i} = \varepsilon$$

I numeri stechiometrici e il grado di avanzamento

$$|\nu_1| A_1 + |\nu_2| A_2 + \dots \rightarrow |\nu_3| A_3 + |\nu_4| A_4 + \dots$$

Con convenzione scelta per i numeri stechiometrici, se n_{i,in} e n_{i,out} sono le moli della specie chimica "i" in ingresso e in uscita, rispettivamente, si ha

$$\frac{n_{1,\text{out}} - n_{1,\text{in}}}{v_1} = \frac{n_{2,\text{out}} - n_{2,\text{in}}}{v_2} = \frac{n_{3,\text{out}} - n_{3,\text{in}}}{v_3} = \frac{n_{4,\text{out}} - n_{4,\text{in}}}{v_4} = \frac{n_{i,\text{out}} - n_{i,\text{in}}}{v_i} = \varepsilon$$

La costante ε prende il nome di **grado di** avanzamento della reazione

fisicamente, ε rappresenta quanto è diminuito il numero di moli dei reagenti e quanto è aumentato il numero di moli dei prodotti

Es.: steam reforming del metano

$$CH_4+H_2O\rightarrow CO+3H_2$$

	Specie	$\nu_{\rm i}$	Ingresso	reazione	Uscita
1	CH ₄	-1	$n_{1,in}$	ν1ε	n _{1,in} +ν ₁ ε
2	H_2O	-1	n _{2,in}	ν2 ε	$n_{2,in}+v_2 \epsilon$
3	CO	1	n _{3,in}	V3 E	n _{3,in} +ν ₃ ε
4	H_2	3	n _{4,in}	ν4 ε	n _{4,in} +ν ₄ ε
		$v = \sum_{i} v_{i} = 2$	n _{in}	νε	n _{in} +νε

Es.: cracking del metano

$$CH_4 \rightarrow C+2H_2$$

	Specie	ν_{i}	Ingresso	reazione	Uscita
1	CH ₄	-1	$n_{1,in}$	ν1 ε	n _{1,in} +ν ₁ ε
2	C	1	n _{2,in}	ν2 ε	$n_{2,in}+v_2 \epsilon$
3	H_2	2	n _{3,in}	V3 E	n _{3,in} +ν ₃ ε
		$v = \sum_{i} v_{i} = 2$	n _{in}	νε	n _{in} +νε

Es.: reazione di shift del gas d'acqua (water gas shift)

$$CO+H_2O\rightarrow CO_2+H_2$$

	Specie	ν_{i}	Ingresso	reazione	Uscita
1	CO	-1	$n_{1,in}$	ν1ε	$n_{1,in}+v_1 \epsilon$
2	H_2O	-1	n _{2,in}	ν2 ε	$n_{2,in}+v_2 \epsilon$
3	CO_2	1	n _{3,in}	V3 E	n _{3,in} +ν ₃ ε
4	H_2	1	n _{4,in}	ν4 ε	n _{4,in} +ν ₄ ε
		$\nu = \sum_{i} \nu_i = 0$	n _{in}	νε	n _{in} +νε

Es.: reazione di dry reforming

$$CO_2+CH_4\rightarrow 2CO+2H_2$$

	Specie	$ u_i $	Ingresso	reazione	Uscita
1	CO_2	-1	n _{1,in}	ν1ε	n _{1,in} +ν ₁ ε
2	CH ₄	-1	n _{2,in}	ν2 ε	$n_{2,in}+v_2 \epsilon$
3	CO	2	n _{3,in}	V3 E	n _{3,in} +ν ₃ ε
4	H_2	2	n _{4,in}	ν4 ε	n _{4,in} +ν ₄ ε
		$v = \sum_{i} v_{i} = 2$	n _{in}	νε	n _{in} +νε

Reagente limitante

Il reagente limitante è quello presente in quantità minore di quanto richiesto dalla stechiometria della reazione

La scomparsa del reagente limitante causa l'esaurirsi della reazione

Per stabilire chi è il reagente limitante si stabiliscono i rapporti nell'alimentazione e si confrontano con i rapporti stechiometrici

Reagente limitante

es. Combustione dell'eptano C₇H₁₆+11O₂→7CO₂+8H₂O

Se nel reattore vengono introdotte I mole di eptano e 12 moli di ossigeno, l'eptano è il reagente limitante. In questo caso, si dice che stiamo operando con un eccesso di ossigeno

per definizione la **combustione** completa è la reazione che trasforma tutto il carbonio presente in un combustibile in CO_2 , tutto l'idrogeno in H_2O e tutto lo zolfo in SO_2

Eccesso

$$|\nu_1| A_1 + |\nu_2| A_2 + \dots \rightarrow |\nu_3| A_3 + |\nu_4| A_4 + \dots$$

Un reagente viene alimentato in **quantità stechiometrica** rispetto ad un altro se il rapporto fra le alimentazioni è uguale al rapporto fra i coefficienti stechiometrici:

$$n_2^{in,stech} = n_1^{in} \frac{|\nu_2|}{|\nu_1|}$$

L'eccesso di un reagente rappresenta la quantità in più rispetto alla alimentazione stechiometrica

$$e_2 = \frac{n_2^{in} - n_2^{in,stech}}{n_2^{in,stech}}$$
 $n_2^{in} = n_2^{in,stech} (1 + e_2)$

Conversione

Si definisce **conversione** di un reagente la quantità percentuale di reagente entrante nel sistema che si converte nei prodotti. La conversione è dunque pari al rapporto tra le moli reagite e le moli alimentate del reagente

$$\xi = \frac{n_{A,in} - n_{A,ou}}{n_{A,in}}$$

Resa

Si definisce **resa** di un reagente A rispetto ad un prodotto P come il rapporto tra la quantità di P formata e quella che si sarebbe avuta se tutto A avesse reagito convertendosi in P

$$r = \frac{n_{p,out} - n_{p,in}}{n_{A,in} \frac{v_p}{|v_A|}}$$

In sistemi in cui avviene una sola reazione chimica resa e conversione sono correlabili in maniera semplice. In presenza di più reazioni concorrenti, la relazione tra conversione di un reagente e resa rispetto ad un determinato prodotto desiderato è funzione oltre che della stechiometria anche dei gradi di avanzamento di tutte le reazioni concorrenti.

Reazioni Multiple

$$\begin{aligned} & |\nu_{1,1}|A_1 + ... + |\nu_{r,1}|A_r & \xrightarrow{\rightleftharpoons} & |\nu_{r+1,1}|A_{r+1} + ... + |\nu_{n,1}|A_n \\ & |\nu_{1,j}|A_1 + ... + |\nu_{r,j}|A_r & \xrightarrow{\rightleftharpoons} & |\nu_{r+1,j}|A_{r+1} + ... + |\nu_{n,j}|A_n \\ & |\nu_{1,m}|A_1 + ... + |\nu_{r,m}|A_r & \xrightarrow{\rightleftharpoons} & |\nu_{r+1,m}|A_{r+1} + ... + |\nu_{n,1}|A_n \end{aligned}$$

 $v_{i,j}$ =numero stechiometrico della i-esima specie chimica nella j-esima reazione

Sommando tutte le reazioni si ottiene

$$|v_1|A_1 + ... + |v_r|A_r \stackrel{\Rightarrow}{\longleftarrow} |v_{r+1}|A_{r+1} + ... + |v_n|A_n$$

$$con \qquad \sum_{i} v_{i,j} \equiv v_{j}$$

Reazioni Multiple

$$\begin{split} & |\nu_{1,l}|A_1 + ... + |\nu_{r,l}|A_r & \xrightarrow{\longrightarrow} |\nu_{r+1,l}|A_{r+1} + ... + |\nu_{n,l}|A_n \\ & |\nu_{1,j}|A_1 + ... + |\nu_{r,j}|A_r & \xrightarrow{\longrightarrow} |\nu_{r+1,j}|A_{r+1} + ... + |\nu_{n,j}|A_n \\ & |\nu_{1,m}|A_1 + ... + |\nu_{r,m}|A_r \xrightarrow{\longrightarrow} |\nu_{r+1,m}|A_{r+1} + ... + |\nu_{n,l}|A_n \end{split}$$

$$n_{i,out} = n_{i,in} + \sum_{j} v_{i,j} \, \epsilon_{j}$$
 $n_{i} = \text{numero di moli}$
 $\text{della specie "i"presenti}$
 allall'uscita
 $\epsilon_{j} = \text{grado di avanzamento}$
 $\text{della j-esima reazione}$

n_{i0}=numero di moli della specie "i" entranti

$$n_{tot,out} = n_{tot,in} + \sum_{j} v_{j} \epsilon_{j}$$
 numero totale di moli uscenti
$$\sum_{i} v_{i,j} \equiv v_{j}$$
 numero stechiometrico della j-esima reazione

Reazioni Multiple

Es.: combustione dell'etano

$$C_2H_6+7/2O_2 \rightarrow 2CO_2+3H_2O$$
 (combustione)
 $C_2H_6+5/2O_2 \rightarrow 2CO+3H_2O$ (reazione indesiderata)

	Specie	$ u_{i,1}$	$v_{i,2}$	Ingresso	reazione	Uscita
1	C ₂ H ₆	-1	-1	$n_{1,in}$	ν _{1,1} ε ₁ +ν _{1,2} ε ₂	$n_{1,in}+v_{1,1} \epsilon_1+v_{1,2} \epsilon_2$
2	O_2	- ⁷ / ₂	- 5/ ₂	n _{2,in}	ν _{2,1} ε ₁ +ν _{2,2} ε ₂	$n_{2,in}+ v_{2,1} \epsilon_1+v_{2,2} \epsilon_2$
3	CO_2	2	0	n _{3,in}	V _{3,1} E ₁ +V _{3,2} E ₂	$n_{3,in}+ v_{3,1} \epsilon_1+v_{3,2} \epsilon_2$
4	H ₂ O	3	3	n _{4,in}	V _{4,1} ε ₁ +V _{4,2} ε ₂	$n_{4,in}+ v_{4,1} \epsilon_1+v_{4,2} \epsilon_2$
5	СО	0	2	n _{5,in}	V _{5,1} E ₁ +V _{5,2} E ₂	n _{5,in} + ν _{5,1} ε ₁ +ν _{5,2} ε ₂
	Somma	$v_1 = 1/2$	$v_2 = \frac{3}{2}$	n _{in}	ν ₁ ε ₁ +ν ₂ ε ₂	n_{in} + $v_1 \ \epsilon_1$ + $v_2 \ \epsilon_2$