
Deviazioni dall'idealità e funzioni residue

Termodinamica dell'Ingegneria Chimica

Per calcolare le variazioni nelle funzioni di stato a seguito di qualunque trasformazione fra stati di equilibrio si può scegliere il percorso più conveniente


Un approccio tipico per le fasi gassose è riferirsi al gas ideale. Si definisce "Funzione Residua" la differenza fra il valore di una funzione termodinamica in un determinato stato e il valore della stessa funzione nello stesso stato se la specie si comportasse come gas ideale.

Funzione Residua

$$F^{R}(T,P)=F(T,P)-F^{ig}(T,P)$$

La conoscenza delle funzioni residue rappresenta un grosso T_2 vantaggio: supponiamo di T_1 operare una trasformazione e di voler calcolare la variazione della funzione di stato F: $F_2=F(T_2,P_2)$ $F_1=F(T_1,P_1)$

 $\Delta F=F_2-F_1=F^R(T_2,P_2)+\Delta F^{ig}-F^R(T_1,P_1)$ la variazione della funzione nello stato di gas ideale è facilmente calcolabile. Per conoscere ΔF bisogna conoscere le proprietà residue

Per calcolare le variazioni nelle funzioni di stato a seguito di qualunque trasformazione fra stati di equilibrio si può scegliere il percorso più conveniente

Entalpia residua

$$V = \frac{Z R T}{P}$$

$$dH = \left[V - T\left(\frac{\partial V}{\partial T}\right)_{P}\right]dP + Cp \ dT \quad \Rightarrow \left(\frac{\partial H}{\partial P}\right)_{T} = V - T\left(\frac{\partial V}{\partial T}\right)_{P}$$

$$\left(\frac{\partial V}{\partial T}\right)_{P} = \frac{R}{P} \frac{Z}{P} + \frac{R}{P} \frac{T}{\left(\frac{\partial Z}{\partial T}\right)_{P}}$$

$$\left(\frac{\partial V}{\partial T}\right)_{P} = \frac{R}{P} + \frac{R}{P} \left(\frac{\partial Z}{\partial T}\right)_{P}$$

$$\left(\frac{\partial H}{\partial P}\right)_{T} = -\frac{RT^{2}}{P} \left(\frac{\partial Z}{\partial T}\right)_{P}$$

$$\left(\frac{\partial H^{ig}}{\partial P}\right)_{T} = 0$$

$$H^{R} = H - H^{ig} = \int_{P=0}^{P} \left(\frac{\partial H}{\partial P}\right)_{T} - \left(\frac{\partial H^{ig}}{\partial P}\right)_{T} dP = \int_{P=0}^{P} \left(\frac{\partial H}{\partial P}\right)_{T} dP = -RT^{2} \int_{P=0}^{P} \left(\frac{\partial Z}{\partial T}\right)_{P} d\ln P$$

$$\frac{H^{R}}{RT_{c}} = -T_{r}^{2} \int_{P_{r}=0}^{T_{r}} \left(\frac{\partial Z}{\partial T}\right)_{P_{r}} dlnP_{r}$$

 $\frac{H^{R}}{RT_{c}} = -T_{r}^{2} \int_{0}^{r} \left(\frac{\partial Z}{\partial T}\right)_{P_{r}} dlnP_{r} \quad \begin{array}{l} \text{Si possono costruire diagrammi} \\ \text{generalizzati di Entalpia residua} \end{array}$

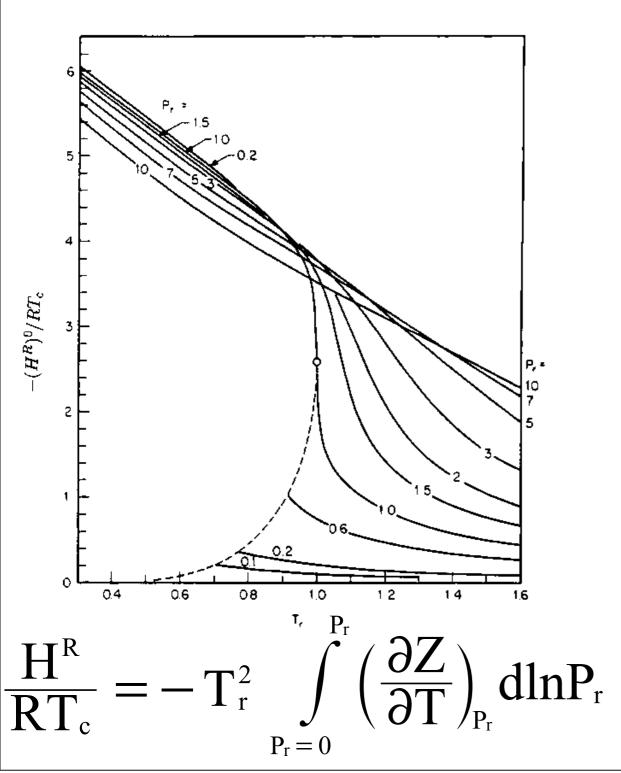
Entalpia residua

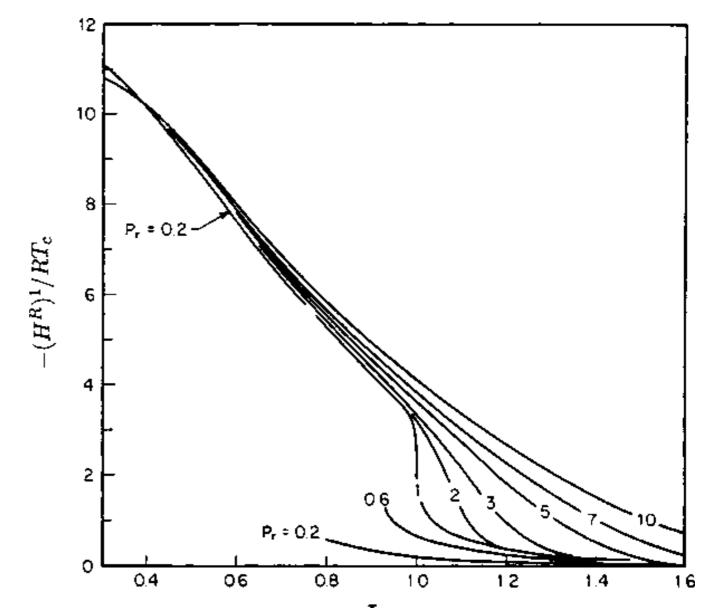
Es. Smith-Van Ness-Abbott

Table E.5 Va	lues $m{of}(H^R)$	$)^0/RT_c$
--------------	-------------------	------------

		Ta	ble E.5	Values d	$\mathbf{pf}(H^R)^0$	RT_c		
$P_r =$	0.0100	0.0500	0.1000	0.2000	0.4000	0.6000	0.8000	1.0000
T _r								_
0.30	-6.045	-6.043	-6.040	-6.034	-6.022	-6.011	-5.999	-5.987
0.35	-5.906	-5.904	-5.901	-5.895	-5.882	-5.870	-5.858	-5.845
0.40	-5.763	-5.761	-5.757	-5.751	-5.738	-5.726	-5.713	-5.700
0.45	-5.615	-5.612	-5.609	-5.603	-5,5 90	-5.577	-5.56 4	-5.551
0.50	-5.465	-5. 463	-5. 459	-5. 453	-5.440	-5.427	-5.414	-5.401
0.55	-0.032	-5.312	-5.309	-5.303	-5.290	-5.278	-5.265	-5.252
0.60	-0.027	-5.162	-5.159	-5.153	-5.141	-5.129	-5.116	-5.104
0.65	-0.023	-0.118	-5.008	-5.002	-4.991	-4.980	-4.968	-4.956
0.70	-0.020	-0.101	-0.213	-4.848	-4.838	-4.828	-4.818	-4.808
0.75	-0.017	-0.088	-0.183	-4.687	-4.679	-4.672	-4.664	-4.655
0.80	-0.015	-0.078	-0.160	-0.345	-4.507	-4.504	-4.499	-4.494
0.85	-0.014	-0.069	-0.141	-0.300	-4.309	-4.313	-4.316	-4.316
0.90	-0.012	-0.062	-0.126	-0.264	-0.596	-4.074	-4.0 94	-4.108
0.93	-0.011	-0.058	-0.118	-0.246	-0.545	-0.960	-3.920	-3.953
0.95	-0.011	-0.056	-0.113	-0.235	-0.516	-0.885	-3.763	-3.825
0.97	-0.011	-0.054	-0.109	-0.225	-0.490	-0.824	-1.356	-3.658
0.98	-0.010	-0.053	-0.107	-0.221	-0.478	-0.797	-1.273	-3.544
0.99	-0.010	-0.052	-0.105	-0.216	-0.466	-0.773	-1.206	-3.376
1.00	-0.010	-0.051	-0.103	-0.212	-0.455	-0.750	-1.151	-2.584
1.01	-0.010	-0.050	-0.101	-0.208	-0.445	-0.721	-1.102	-1.796

Table E.6 Values of $(H^R)^1/RT$.


		•	able Eq	Agines (K1 _C		
$P_r =$	0.0100	0.0500	0.1000	0.2000	0.4000	0.6000	0.8000	1.0000
T,		-						
0.30	-11.098	-11.096	-11.095	-11.091	-11.083	-11.076	-11.069	-11.062
0.35	-10.656	-10.655	-10.654	-10.653	-10.650	-10.646	-10.643	-10.640
0.40	-10.121	-10.121	-10.121	-10.120	-10.121	-10.121	-10.121	-10.121
0.45	-9.515	-9.515	-9.516	-9.517	-9.519	-9.521	-9.52 <i>3</i>	-9.525
0.50	-8.868	-8.869	-8.870	-8.8 7 2	-8.876	-8.880	-8.884	-8.888
0.55	-0.080	-8.211	-8.212	-8.215	-8.221	-8.226	-8.232	-8.238
0.60	-0.059	-7. 568	-7.570	<i>−7.573</i>	-7.579	- <i>7.585</i>	-7.591	-7.596
0.65	-0.045	-0.247	-6.949	-6.952	-6.959	-6.966	-6.973	-6.980
0.70	-0.034	-0.185	-0.415	-6.360	-6.367	-6.373	-6.381	-6.388
0.75	-0.027	-0.142	-0.306	-5. 79 6	-5.802	-5.809	-5.816	-5.824
0.80	-0.021	-0.110	-0.234	-0.542	-5.266	-5.271	-5.278	-5.285
0.85	-0.017	-0.087	-0.182	-0.401	-4.753	-4.754	-4.758	-4.763
0.90	-0.014	-0.070	-0.144	-0.308	-0.751	-4.254	-4.248	-4.249
0.93	-0.012	-0.061	-0.126	-0.265	-0.612	-1.236	-3.942	-3.934
0.95	-0.011	-0.056	-0.115	-0.241	-0.542	-0. 99 4	-3.737	-3.712
0.97	-0.010	-0.052	-0.105	-0.219	-0.483	-0.837	1.616	-3.470
0.98	-0.010	-0.050	-0.101	-0.209	-0.457	-0.776	-1.324	-3.332
0.99	-0.009	-0.048	-0.097	-0.200	-0.433	-0.722	-1.154	-3.164
1.00	-0.009	-0.046	-0.093	-0.191	-0.410	-0.675	-1.034	-2.471
1.01	-0.009	-0.044	-0.089	-0.183	-0.389	-0.632	-0. 940	-1.375


$$\frac{H^{R}}{RT_{c}} = -T_{r}^{2} \int_{P_{r}=0}^{P_{r}} \left(\frac{\partial Z}{\partial T}\right)_{P_{r}} dlnP_{r}$$

Si possono costruire diagrammi generalizzati di Entalpia residua

Entalpia residua

Si possono costruire diagrammi generalizzati di Entalpia residua

Energia interna residua

$$V = \frac{Z R T}{P}$$

$$U=H-PV \Rightarrow U^R=H^R-PV^R$$

$$PV^R=PV-RT=(Z-I)RT$$

$$U^R=H^R-(Z-I)RT$$

$$\frac{U^{R}}{RT_{c}} = \frac{H^{R}}{RT_{c}} - (Z - 1)T_{r}$$

Si possono costruire diagrammi generalizzati di Energia interna residua

Energia libera residua

$$V = \frac{Z R T}{P}$$

$$dG = VdP - SdT$$

$$\left(\frac{\partial G}{\partial P}\right)_{T} = V = \frac{Z R T}{P}$$

$$G^{R} = G - G^{ig} = \int_{P=0}^{P} \left(\frac{\partial G}{\partial P}\right)_{T} dP - \int_{P=0}^{P} \left(\frac{\partial G^{ig}}{\partial P}\right)_{T} dP = RT \int_{P=0}^{P} (Z - 1) d\ln P$$

$$\frac{G^{R}}{RT_{c}} = T_{r} \int_{P_{r}=0}^{P_{r}} (Z-1) dlnP_{r}$$

Si possono costruire diagrammi generalizzati di Energia libera residua

Entropia residua

$$V = \frac{Z R T}{P}$$

$$G = H - S T$$

$$S^{R} = \frac{H^{R} - G^{R}}{T}$$

$$H^{R} = -RT^{2} \int_{P=0}^{P} \left(\frac{\partial Z}{\partial T}\right)_{P} d\ln P$$

$$G^{R} = RT \int_{P=0}^{P} (Z-1) d\ln P$$

$$\frac{S^{R}}{R} = \frac{1}{T_{r}} \left(\frac{H^{R}}{RT_{c}} - \frac{G^{R}}{RT_{c}} \right)$$

 $\frac{S^{\text{R}}}{R} = \frac{1}{T_{\text{r}}} \left(\frac{H^{\text{R}}}{RT_{\text{c}}} - \frac{G^{\text{R}}}{RT_{\text{c}}} \right) \quad \begin{array}{l} \text{Si possono costruire diagrammi} \\ \text{generalizzati di Entropia residua} \end{array}$

Entropia residua

Es. Smith-Van Ness-Abbott

Table	F.9	Values	of C	ς <i>R</i> γ0 ,	/R
IUVIC		Y CIUCS '		, , ,	41

		Ta	ble E.9	Values	of $(S^R)^0$	/R		
$P_r =$	0.0100	0.0500	0.1000	0.2000	0.4000	0.6000	0.8000	1.0000
0.30	-11.614	-10.008	-9.319	8.635	-7.96 <i>1</i>	<i>-7.574</i>	<i>−7.304</i>	-7.099
0.35	-11.185	-9.579	-8.890	-8.205	-7.529	-7.140	-6.869	-6.663
0.40	-10.802	<i>-9.19</i> 6	-8.506	<i>−7.821</i>	-7.144	6.755	-6.483	-6.275
0.45	-10.453	-8.847	-8.157	-7.472	-6.794	-6.404	<i>−6.132</i>	-5.924
0.50	-10.137	-8.531	-7.841	<i>−7.156</i>	-6.479	-6.089	-5.816	-5.608
0.55	-0.038	-8.245	~7.555	-6.870	-6.193	-5.803	-5.531	-5.324
0.60	-0.029	-7.98 <i>3</i>	-7.294	-6.610	-5.933	-5.544	-5.273	-5.066
0.65	-0.023	-0.122	-7.052	- <i>6.368</i>	-5.694	-5.306	-5.036	-4.830
0.70	-0.018	-0.096	-0.206	-6.140	-5.467	-5.082	-4.814	-4.610
0.75	-0.015	-0.078	-0.164	-5.917	<i>−5.248</i>	-4.866	-4.600	-4.399
0.80	-0.013	-0.064	-0.134	-0.294	-5.026	-4.694	-4.388	-4.191
0.85	-0.011	-0.054	-0.111	-0.239	-4.785	-4.418	-4.166	-3.976
0.90	-0.009	-0.046	-0.094	-0.199	-0.463	-4.145	-3.912	-3.738
0.93	-0.008	-0.042	-0.085	-0.179	-0.408	-0.750	<i>-3.723</i>	-3.569
0.95	-0.008	-0.039	-0.080	-0.168	-0.377	-0.671	-3.556	-3.433
0.97	-0.007	-0.037	-0.075	-0.157	-0.350	-0.607	-1.056	-3.259
0.98	-0.007	-0.036	-0.073	-0.153	-0.337	-0.580	-0.97 1	-3.142
0.99	-0.007	-0.035	-0.071	-0.148	-0.326	-0.555	0.903	-2.972
1.00	-0.007	-0.034	-0.069	-0.144	-0.315	-0.532	-0.847	-2.178
1.01	-0.007	-0.033	-0.067	-0.139	-0.304	~0.510	-0.799	-1.391


Table E.10 Values of $(S^R)^1/R$

Table Elle Valdoo of (b) / R									
$P_r =$	0.0100	0.0500	0.1000	0.2000	0.4000	0.6000	0.8000	1.0000	
T _r									
0.30	-16.782	-16.774	-16.764	-16.744	-16.705	-16.665	-16.626	-16.586	
0.35	-15.413	-15.408	-15.401	-15.387	-15.359	-15.333	-15.305	-15.278	
0.40	-13.990	-13.986	-13.981	-13.972	-13.953	-13.934	-13.915	-13.896	
0.45	-12.564	-12.561	-12.558	-12.551	-12.537	-12.523	-12.509	-12.496	
0.50	-11.202	-11.200	-11.197	-11.092	-11.082	-11.172	-11.162	-11.153	
0.55	-0.115	-9.948	9.946	-9.942	-9.935	-9.928	-9.921	-9.914	
0.60	-0.078	-8.828	-8.826	-8.823	-8.817	-8.811	-8.806	-8.799	
0.65	-0.055	-0.309	-7.832	-7.829	-7.824	-7.819	<i>−7.815</i>	-7.510	
0.70	-0.040	-0.216	-0.491	-6.951	-6.945	-6.941	-6.937	-6.933	
0.75	-0.029	-0.156	-0.340	-6.17 <i>3</i>	<i>−6.167</i>	<i>−6.162</i>	<i>−6.158</i>	-6.155	
0.80	-0.022	-0.116	-0.246	-0.578	-5.475	-5.468	-5.462	-5.458	
0.85	-0.017	-0.088	-0.183	-0.400	-4.853	-4.841	<i>−4.832</i>	-4.826	
0.90	-0.013	-0.068	-0.140	-0.301	-0.744	-4.269	-4.249	-4.238	
0.93	-0.011	-0.058	-0.120	-0.254	-0.593	-1.219	-3.914	-3.894	
0.95	-0.010	-0.053	-0.109	-0.228	-0.517	-0.961	-3.697	-3.658	
0.97	-0.010	-0.048	-0.099	-0.206	-0.456	-0.797	-1.570	-3.406	
0.98	-0.009	-0.046	-0.094	-0.196	-0.429	-0.734	-1.270	-3.264	
0.99	-0.009	-0.044	-0.090	-0.186	-0.405	-0.680	-1.098	-3.093	
1.00	-0.008	-0.042	-0.086	-0.177	-0.382	-0.632	-0.977	-2.399	
1.01	-0.008	-0.040	-0.082	-0.169	-0.361	-0.590	-0.883	-1.306	

$$\frac{S^{R}}{R} = \frac{1}{T_{r}} \left(\frac{H^{R}}{RT_{c}} - \frac{G^{R}}{RT_{c}} \right)$$

 $\frac{S^{R}}{R} = \frac{1}{T_{r}} \left(\frac{H^{R}}{RT_{c}} - \frac{G^{R}}{RT_{c}} \right) \quad \begin{array}{l} \text{Si possono costruire diagrammi} \\ \text{generalizzati di Entropia residua} \end{array}$

Fasi liquide

Fasi liquide: esempio per l'entalpia

$$\begin{split} \Delta H = & H_L(T_2, P_2) \underline{-H_{LS}(P_2) + H_{LS}(P_2) + H_{VS}(P_2) + H_{VS}(P_2) + H_{IS}(T_{Sat}(P_2), P_2) + H_{IS}(T_{Sat}(P_2), P_2) + H_{IS}(T_{Sat}(P_1), P_1) + H_{IS}(T_{Sat}(P_1), P_1) + H_{IS}(P_1) + H_{IS}(P_1) + H_{LS}(P_1) - H_L(T_1, P_1) \end{split}$$

$$\begin{split} \Delta H = & C_{PmH}(T^{sat}(P_2) - T_2) + \\ & - \lambda(P_2) + H^R(T^{sat}(P_2), P_2) + \Delta H^{ig} + \\ & - H^R(T^{sat}(P_1), P_1) + \lambda(P_1) + C_{PmH}(T^{sat}(P_1) - T_1) \end{split}$$

liquefazione per laminazione

 $H_2 = H_1$ sono note le condizioni iniziali. É nota la pressione finale. L'equazione va risolta per la temperatura finale

Se si suppone liquefazione: $\Delta H = H_2^R - (1 - x)\lambda_{vap} + \Delta H^{ig} - H_1^R = 0$

$$x = titolo di vapore = \frac{m_{vapore}}{m_{totale}}$$

L'unica incognita è x, perchè a P fissata la T è nota se c'è saturazione.

Se x>1, non c'è liquefazione Se x<1, c'è liquefazione Se x<0, c'è qualche errore...

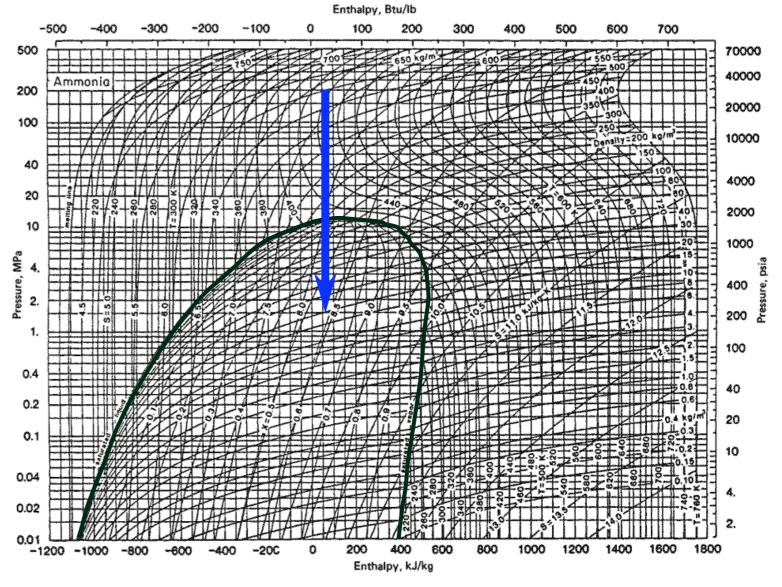


FIG. 2-6 Enthalpy-log-pressure diagram for ammonia, 1 MPa = 10 bar. (Copyright 1981 by the American Society of Heating, Refrigerating and Air-Conditioning Engineers and reproduced by permission of the copyright owner.)