1. calcolare a T=1000°C e P=1bar il grado di avanzamento e la composizione di equilibrio per la reazione

$$CO_{(g)}+H_2O_{(g)}=CO_{2(g)}+H_{2(g)}$$

se nel reattore viene alimentata una miscela con composizione stechiometrica di CO e H_2O

Ris: $\varepsilon = 0.62$

Scriviamo il bilancio di materia

N°	Specie	ν	Ingresso	Reaz	Fr. mol y
1	CO	-1	1	1-ε	$(1-\epsilon)/2$
2	H ₂ O	-1	1	1-ε	$(1-\epsilon)/2$
3	CO_2	1	0	3	ε/2
4	H_2	1	0	ε	ε/2
	Tot	2	2	2	1

Per la reazione in esame, v=0

Calcoliamo la costante di equilibrio:

(utilizzando la tabella delle Energie libere di formazione in condizioni standard)

 $\Delta G^{\circ}_{r}(1273K) = (-436.907-25.551+216.655+250.880)KJ/mole = 5.077KJ/mole$

$$ln(Keq) = -\Delta G_r^{\circ}(1273K)/(R 1273K) = -0.48$$

Entrando nel diagramma "Costanti di equilibrio di alcune reazioni in funzione della temperatura" con T=1273K e quindi 1/T 10^4 =7.85/K si sarebbe valutato $ln(Keq)\approx0.5$. Keq=0.62.

$$K_{eq} = \frac{y_4 y_3}{y_1 y_2} = \frac{\varepsilon^2}{(1 - \varepsilon)^2} \Rightarrow \varepsilon = \frac{\sqrt{K_{eq}}}{1 + \sqrt{K_{eq}}} \text{ (il grado di avanzamento deve essere compreso fra 0 e 1)}$$

$$\varepsilon = 0.44$$

N°	Specie	Fr. mol y all'eq.
1	CO	0.28
2	H ₂ O	0.28
3	CO_2	0.22
4	H_2	0.22
	Tot	1

2. calcolare a $T=600\,^{\circ}\text{C}$ e P=100bar il grado di avanzamento all'equilibrio della reazione

$$NO_{(g)}+^{1}/_{2}O_{2(g)}=NO_{2(g)}$$

se nel reattore viene alimentata una mole di NO ed aria in quantità tale da avere il 100% di eccesso di ossigeno.

Ris: $\varepsilon = 0.54$

Scriviamo il bilancio di materia

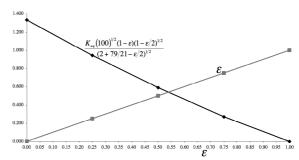
N°	Specie	ν	Ingresso	Reaz	Fr. mol y
1	NO	-1	1	1-ε	$(1-\varepsilon)/n_{\text{out}}$
2	O_2	$-\frac{1}{2}$	1	$1-^{\varepsilon}/_2$	$(1-\epsilon/2)/n_{out}$
3	NO_2	1	0	ε	ϵ/n_{out}
4	N_2	0	$^{79}/_{21}$	$^{79}/_{21}$	$^{79}/_{21}/$ n_{out}
	Tot	v=-1/2	$n_{in}=2+^{79}/_{21}$	$n_{\text{out}} = 2 + \frac{79}{21} - \frac{\epsilon}{2}$	1

Calcoliamo la costante di equilibrio:

(utilizzando la tabella delle Energie libere di formazione in condizioni standard) $\Delta G^{\circ}_{r}(823K)=(69.271+8.085/2-72.724)KJ/mole=8.25KJ/mole$

$$ln(Keq) = -\Delta G^{\circ}_{r}(823K)/(R 823K) = -1.14$$

Entrando nel diagramma "Costanti di equilibrio di alcune reazioni in funzione della temperatura" con T=823K e quindi 1/T 10^4 =11.5/K si sarebbe valutato $ln(Keq)\approx-1$. Keq=0.32.


$$K_{eq} \left(\frac{P}{1bar} \right)^{1/2} = \frac{y_3}{y_1 y_2^{1/2}} = \frac{\varepsilon}{(1 - \varepsilon)(1 - \varepsilon/2)^{1/2}} (2 + \frac{79}{21} - \varepsilon/2)^{1/2}$$

L'eq. va risolta per tentativi:

$$\varepsilon = \frac{K_{eq} \left(\frac{P}{1bar}\right)^{1/2} (1 - \varepsilon)(1 - \varepsilon/2)^{1/2}}{(2 + \frac{79}{21} - \varepsilon/2)^{1/2}}$$

un modo possibile è diagrammare il primo e il 2° membro (ϵ va fra 0 e 1) e trovare l'intersezione

bastano 4 punti per stabilire che ε≈0.54

